Calmodulin methionine residues are targets for one-electron oxidation by hydroxyl radicals: formation of $S \therefore N$ three-electron bonded radical complexes

Thomas Nauser,^a Michael Jacoby,^b Willem H. Koppenol,^a Thomas C. Squier^b and Christian Schöneich^{ac}

Received (in Cambridge, UK) 23rd September 2004, Accepted 25th October 2004 First published as an Advance Article on the web 10th December 2004 DOI: 10.1039/b414687e

The one-electron oxidation of calmodulin, studied on the microsecond timescale by pulse radiolysis, leads to methionine sulfide radical cations, which complex to adjacent amide groups to form three-electron bonded intermediates.

The one-electron (1e) oxidation of organic sulfides and methionine (Met) represents an important reaction mechanism in vivo.^{1,2} Evidence for a Cu(II)-catalyzed oxidation of Met³⁵ in the Alzheimer's disease β -amyloid peptide (β AP) was obtained³ despite unfavourable reduction potentials for the initial 1e-transfer (cf. the formal reduction potential of β AP-Cu(II), 0.5–0.55 V,⁴ and the anodic peak potential of Met at pH 8.2, 1.26 V vs. Ag/AgCl⁵). Based on theoretical studies, Met radical cations were proposed as intermediates.⁶ In the structure of βAP , Met radical cation formation may be facilitated by a preexisting close sulfur-oxygen (S-O) interaction between the Met³⁵ sulfur and the carbonyl oxygen of the peptide bond C-terminal to Ile^{31,7,8} This preexisting S-O bond suggests that the 1e-transfer from Met³⁵ to Cu(II) is supported through stabilization of the Met radical cation by the electron-rich carbonyl oxygen, generating an S. O-three-electronbonded⁹ radical cation (Scheme 1, reaction 1).⁷

Pulse radiolysis data confirmed the formation and stabilization^{10,11} of such S.: O bonded radical cations in model peptides on the microsecond timescale and their pH-dependent conversion into sulfur–nitrogen (S.: N)-bonded sulfide radicals (for a representative example, see Scheme 2, reaction 2).^{10,11}

The catalytic role of preexisting S–O (or S–N) interactions may not only be important for the Cu(II)-dependent oxidation and neurotoxicity of β -amyloid peptide, but for the oxidation of Met in proteins, in general. Here we report the first experimental evidence for the formation of Met radical cations during the 1e-oxidation of a protein. We reacted the calcium-saturated forms of wild-type (wt) calmodulin (CaM–Ca₄) and Met-deficient mutant CaM–Ca₄ with pulse radiolytically generated hydroxyl radicals (HO') [reaction 3] at pH 5, conditions under which the crystal structure of wt CaM–Ca₄ has been recorded 12 and the solvent accessible surface areas of the Met residues are known. 13

$$\text{HO}^{\cdot} + \text{CaM}-\text{Ca}_4 \rightarrow \text{products.}$$
 (3)

Wild-type CaM contains nine Met residues, which become surfaceexposed upon the binding of four equivalents calcium¹⁴ and represent *ca.* 46% of the surface area of the hydrophobic patches important for the association of CaM to target proteins.¹⁵ All nine Met residues are located within α -helices with at least one close interaction with a peptide bond carbonyl oxygen and/or amide nitrogen (*vide infra*).

Fig. 1A shows the optical spectrum integrated over 500 ns between 0.6 and 1.1 µs after pulse irradiation¹⁶⁻¹⁸ of an N₂Osaturated aqueous solution, pH 5, containing 6×10^{-5} M wt CaM-Ca₄. The spectrum is characterized by a broad maximum around 390 nm as expected for an (S.: N)-three-electron bonded sulfide radical. For comparison, Fig. 1A shows typical spectra for $(S \therefore O)^{11}$ and $(S \therefore N)^{19}$ -bonded sulfide radicals, recorded for small model sulfides, normalized to fit into the plot. The optical spectrum recorded for wt CaM-Ca₄ shows a close similarity to that characteristic for (S : N) three-electron bonds. Importantly, no transient 390 nm absorbance was observed upon the reaction of HO' radicals with two Met-deficient CaM mutants, L7-Met^{144,145} and L8-Met¹⁴⁴ (Fig. 1A). In these mutants, all Met residues were replaced by Leu, except the fairly unreactive¹³ (towards oxidation by $H_2O_2^{13}$) residues Met¹⁴⁴ in L8–Met¹⁴⁴ and Met^{144,145} in L7. These experiments show that the transient 390 nm absorbance in the spectrum of wt CaM-Ca₄ is caused by the reaction of HO' with Met. Based on $\varepsilon_{390}(S \therefore N) =$ 4500 M^{-1} cm⁻¹,¹⁹ the yield²⁰ of S. N-bonded sulfide radicals is calculated as $G(S : N) = 1.2 \pm 0.3$. Taking $k_3 = 3 \times$ $10^{10} \text{ M}^{-1}\text{s}^{-1}$, 21-25 we calculate that at 0.85 µs after the pulse (the mean over the integration period between 0.6 and 1.1 µs after the pulse) the reaction of HO[•] with 6×10^{-5} M wt CaM–Ca₄ is *ca*.

Scheme 1 Assistance of the 1e-oxidation of Met³⁵ by Ile^{31} in βAP .

Scheme 2 pH-dependent rearrangement of S : O to S : N bond of Met sulfide radical cation in a linear model peptide.

Fig. 1 Optical spectra obtained (A) 0.6–1.1 μs and (B) 5.0–5.5 μs after pulse irradiation (18 Gy) of N₂O-saturated aqueous solutions, pH 5, containing 6 \times 10⁻⁵ M CaM–Ca₄ (wt and mutants L8–Met¹⁴⁴, L7–Met^{144,145}).

75% complete. This corresponds to $G = 0.75 \times 5.3 = 4.0$ of HO[•] reacted with wt-CaM–Ca₄ and an efficiency of 30% for the HO[•]-dependent formation of (S.:.N)-bonded complexes. A large fraction of the remainder HO[•] will likely add to one of the surface-exposed¹⁴ Phe residues, which are present on both wt and mutant CaM, contributing to the significant absorbance at $\lambda < 370$ nm observed for all protein variants.

Fig. 1B shows the optical spectrum recorded between 5 and 5.5 µs after pulse irradiation of an N2O-saturated aqueous solution, pH 5, containing 6×10^{-5} M wt CaM-Ca₄. At this time after the pulse, the reaction of HO' radicals with CaM-Ca4 is complete. The absorption maximum is now shifted to 405-415 nm, consistent with a time-dependent formation of tyrosyl radicals.²⁶ Importantly, pulse irradiation of L7-Met^{144,145} did not generate a 405-415 nm absorption, suggesting that Met sulfide radicals are precursors of tyrosyl radicals (Scheme 3, reactions 4 and 5). This is in accord with data on electron transfer from Tyr to Met radical cation complexes in small model peptides.²⁶ Based on ε_{405} (tyrosyl radical) = $2600 \text{ M}^{-1} \text{ cm}^{-1}$,²⁷ the yield of tyrosyl radicals at 5-5.5 μ s after the pulse is calculated as G = 1.65. This yield represents 31% of the total HO[•] radical yield ($G_i = 5.3$). Based on a ca. 30% yield of S. N during the reaction of HO[•] with CaM-Ca₄ (vide supra), this final yield of tyrosyl radicals suggests that the conversion of (S.: N)-bonded protein radicals into protein tyrosyl radicals is quantitative.

Scheme 3 Formation of tyrosyl radicals.

Fig. 2 Representative example of preexisting S–O and S–N interactions of Met^{71} in the crystal structure (PDB file 1CLL)¹² of wt-CaM–Ca₄.

The structure of wt CaM-Ca₄ (PDB file 1CLL)¹² reveals that all Met sulfide atoms are located in close vicinity to at least one peptide bond amide and/or carbonyl function. Fig. 2 shows a representative case for Met⁷¹ to demonstrate the close vicinity of the Met sulfur atom to its C-terminal peptide bond with a distance of 3.51 Å to the amide nitrogen and 3.82 Å to the amide carbonyl group. Other close interactions exist, for example, between the Met⁵¹ sulfur atom and the amide nitrogen of the peptide bond C-terminal to Glu⁴⁷ (4.25Å) or the Met⁷⁶ sulfur to the carbonyl group in the peptide bond C-terminal to Met⁷². These two examples show close distances to functional groups of amino acid residues in position i-4, similar to the case presented for the Ile^{31} -Met³⁵ interaction in β AP (*vide supra*). A comprehensive search of the Cambridge Structural Database indicated a high frequency of non-bonded S-O interactions between protein Met sulfides and peptide bond amides.²⁸ Hence, stabilization of Met sulfide radical cations by amides may be a general phenomenon in proteins.

We acknowledge financial support by the NIH (2PO1AG12993), the University of Kansas, and the ETH Zürich.

Thomas Nauser,^a Michael Jacoby,^b Willem H. Koppenol,^a

Thomas C. Squier^b and Christian Schöneich^{ac}

^aLaboratory of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland, CH-8093

^bPacific Northwest National Laboratory, Richland, WA, USA

^cDepartment of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA. E-mail: schoneic@ku.edu; Fax: +1 (785) 864 5736; Tel: +1 (785) 864 4880

Notes and references

- E. Baciocchi, O. Lanzalunga, S. Malandrucco, M. Ioele and S. Steenken, J. Am. Chem. Soc., 1996, 118, 8973.
- 2 Ch. Schöneich, Arch. Biochem. Biophys., 2002, 397, 370.
- 3 S. Varadarajan, J. Kanski, M. Aksenova, C. Lauderback and D. A. Butterfield, J. Am. Chem. Soc., 2001, 123, 5625.
- 4 X. Huang, M. P. Cuajungco, C. S. Atwood, M. A. Hartshorn, J. D. A. Tyndall, G. R. Hanson, K. C. Stokes, M. Leopold, G. Multhaup, L. E. Goldstein, R. C. Scarpa, A. J. Saunders, J. Lim, R. D. Moir, C. Glabe, E. F. Bowden, C. L. Masters, D. P. Fairlie, R. E. Tanzi and A. I. Bush, *J. Biol. Chem.*, 1999, **274**, 37111.
- 5 Sanaullah, G. S. Wilson and R. S. Glass, J. Inorg. Biochem., 1994, 55, 87.
- 6 A. Rauk, D. A. Armstrong and D. P. Fairlie, J. Am. Chem. Soc., 2000, 122, 9761.
- 7 D. Pogocki and Ch. Schöneich, Chem. Res. Toxicol., 2002, 15, 408.
- 8 J. Kanski, M. Aksenova, Ch. Schöneich and D. A. Butterfield, Free Radical Biol. Med., 2002, 32, 1205.
- 9 K.-D. Asmus, Acc. Chem. Res., 1979, 12, 436.
- 10 Ch. Schöneich, D. Pogocki, P. Wisniowski, G. L. Hug and K. Bobrowski, J. Am. Chem. Soc., 2000, 122, 10224.

- 11 Ch. Schöneich, D. Pogocki, G. L. Hug and K. Bobrowski, J. Am. Chem. Soc., 2003, 125, 13700.
- 12 R. Chattopadhyaya, W. E. Meador, A. R. Means and F. A. Quiocho, J. Mol. Biol., 1992, 228, 1177.
- 13 D. Yin, K. Kuczera and T. C. Squier, *Chem. Res. Toxicol.*, 2000, **13**, 103.
- 14 T. Yuan, H. Ouyang and H. J. Vogel, J. Biol. Chem., 1999, 274, 8411.
- 15 K. T. O'Neil and W. F. DeGrado, Trends Biochem. Sci., 1990, 15, 59.
- 16 For a description of the pulse radiolysis setup, see ref. 17, and for an overview over radiation chemical techniques, see ref. 18.
- 17 A. Daiber, T. Nauser, N. Takaya, T. Kudo, P. Weber, C. Hultschig, H. Shoun and V. Ullrich, J. Inorg. Biochem., 2002, 88, 343.
- 18 C. von Sonntag, *The Chemical Basis of Radiation Biology*, Taylor and Francis, London, 1987.
- 19 D. Pogocki, PhD Thesis, Institute of Nuclear Chemistry and Technology, Warsaw, 1996.
- 20 The radiation chemical yield G refers to the number of species reacted/ generated per 100 eV absorbed energy; G = 1.0 corresponds to 0.1036 µM generated/reacted species per 1 J absorbed energy.

- 21 The minimum value of k_3 is 3 $\times 10^{10}$ M⁻¹s⁻¹, based on the Smoluchowski equation.²² The diffusion coefficient and the radius of the hydroxyl radical are 2.3×10^{-5} cm²s⁻¹ and 2.2 Å, respectively.²³ Based on comparable proteins, these values are 1.0×10^{-6} cm²s⁻¹ and 16 Å for calmodulin.²⁴ Given the fact that calmodulin is not a spherical protein, the rate constant of 3×10^{10} M⁻¹s⁻¹ represents a lower limit (ref. 25).
- 22 K. J. Laidler, *Chemical Kinetics*. Harper & Row, Publishers, New York, 1987.
- 23 G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, *J. Phys. Chem. Ref. Data*, 1988, **17**, 513.
- 24 C. Tanford, *Physical Chemistry of Macromolecules*, John Wiley & Sons, Inc., New York, 1961, p. 358.
- 25 R. Braams and M. Ebert, Adv. Chem. Ser., 1968, 81, 464.
- 26 K. Bobrowski and R. Lubis, Int. J. Radiat. Biol., 1986, 50, 1039.
- 27 R. V. Bensasson, E. G. Land and T. G. Truscot, *Flash Photolysis and Pulse Radiolysis*, Pergamon Press, Oxford, 1983.
- 28 M. Iwaoka, S. Takemoto and S. Tomoda, J. Am. Chem. Soc., 2002, 124, 10613.